NEW GENERATION AD AND OTHER TREATMENTS IN THE SETTING OF MCCS

MARK A. SUPIANO, M.D. **PROFESSOR, GERIATRICS DIVISION UNIVERSITY OF UTAH CENTER ON AGING**

DISCLOSURES

No relevant financial relationships with any commercial interests to report

OUTLINE

- Anti-amyloid antibody treatments in MCC
 - Generalizability
 - Competing risk for anti-thrombotic treatment
- Treating cardiovascular MCC decreases ADRD risk
 - Hypertension
 - Atrial fibrillation

MULTIPLE CHRONIC CONDITIONS DOMINATE ADRD

- More than 95% of people with ADRD have one or more other chronic conditions.
- Cardiovascular diseases are common chronic conditions among people with ADRD.
- Having six or more chronic conditions is nearly 4-fold higher in those with ADRD.



FIGURE 41-2. Proportion (%) of Medicare beneficiaries with multiple chronic conditions by select chronic condition (2005). Boyd, C in Hazzard's Geriatrics and Gerontology, 2022

OUTCOMES STRATIFIED BY MCC ARE NOT REPORTED IN ANTI-AMYLOID ANTIBODY TRIALS

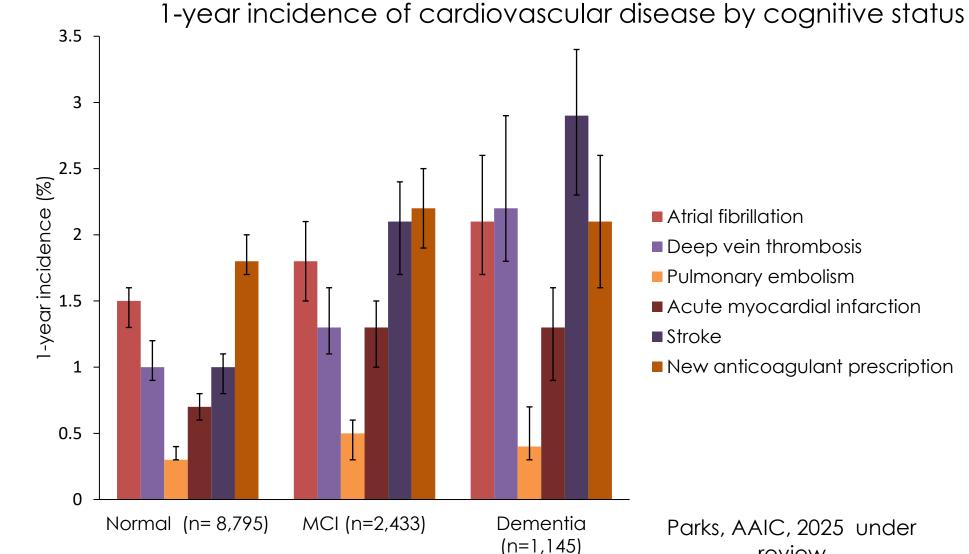
• CLARITY AD – Lecanemab

Table 1. Characteristics of the Participants at Baseline (Modified Intention-to-Treat Population).*				
Characteristic	Lecanemab (N=859)	Placebo (N=875)		
Age — yr	71.4±7.9	71.0±7.8		
Sex — no. (%)				
Female	443 (51.6)	464 (53.0)		
Male	416 (48.4)	411 (47.0)		
Race — no. (%)†				
White	655 (76.3)	677 (77.4)		
Black	20 (2.3)	24 (2.7)		
Asian	147 (17.1)	148 (16.9)		
Other or missing	37 (4.3)	26 (3.0)		
Hispanic ethnic group — no. (%)†	107 (12.5)	108 (12.3)		
Time since diagnosis — yr	1.41±1.51	1.34±1.54		
Time since onset of symptoms — yr	4.13±2.35	4.15±2.53		
Global CDR score — no. (%)‡				
0.5	694 (80.8)	706 (80.7)		
1	165 (19.2)	169 (19.3)		
Clinical subgroup — no. (%)				
Mild dementia due to Alzheimer's disease	331 (38.5)	331 (37.8)		
Mild cognitive impairment due to Alzheimer's disease	528 (61.5)	544 (62.2)		

• TRAILBLAZER-ALZ 2 -Donanemab

Fable 1. Baseline Demographics and Clinical Characteristics in the Low/Medium and Combined Tau Populations							
	Low/medium tau		Combined tau				
Characteristic	Donanemab (n = 588)	Placebo (n = 594)	Donanemab (n = 860)	Placebo (n = 876)			
Sex, No. (%)							
Women	325 (55.3)	321 (54.0)	493 (57.3)	503 (57.4)			
Men	263 (44.7)	273 (46.0)	367 (42.7)	373 (42.6)			
Age, mean (SD), y	74.3 (5.7)	74.3 (5.8)	73.0 (6.2)	73.0 (6.2)			
Race, No. (%) ^a							
American Indian or Alaska Native	1 (0.2)	0	2 (0.2)	0 (0.0)			
Asian	48 (8.2)	38 (6.4)	57 (6.6)	47 (5.4)			
Black or African American	17 (2.9)	17 (2.9)	19 (2.2)	21 (2.4)			
White	522 (88.8)	539 (90.7)	781 (90.9)	807 (92.1)			

CLARITY-AD SUPPLEMENTAL DATA


4				
Overall representativeness of	The participants in the present trial demonstrated more fe			
this trial	male and the expected age and ApoE4 distribution for A			
	disease. Biological sex was reported by the participants; o			
	female, male. Gender was not assessed. The proportion of			
	participants that underwent randomization overall was sm			
	US). The proportion of Hispanic participants was 22.5% in			
	somewhat larger than the total population distribution of H			
	people in the US. The incidence of common comorbidities			
	(hypertension, hypercholesterolemia, diabetes, heart dise			
	consistent with proportion in the US elderly population. No			
	enrolled in South America or Africa.			

emales than zheimer's options were of Black mall (4.5% in in US, **Hispanic** S ease) were lo patient was

RATES OF NEW INDICATION FOR ANTITHROMBOTIC DRUGS IN PEOPLE WITH COGNITIVE IMPAIRMENT

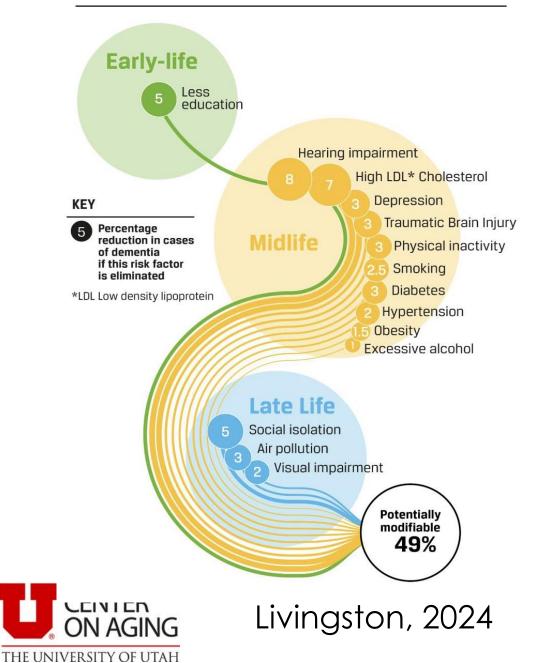
Nearly 8% of people with MCI/ADRD develop a CV condition requiring antithrombotic drugs per year.

NIA R13 MCC & ADRD March 2025

Deep vein thrombosis Pulmonary embolism Acute myocardial infarction

New anticoagulant prescription

Parks, AAIC, 2025 under review

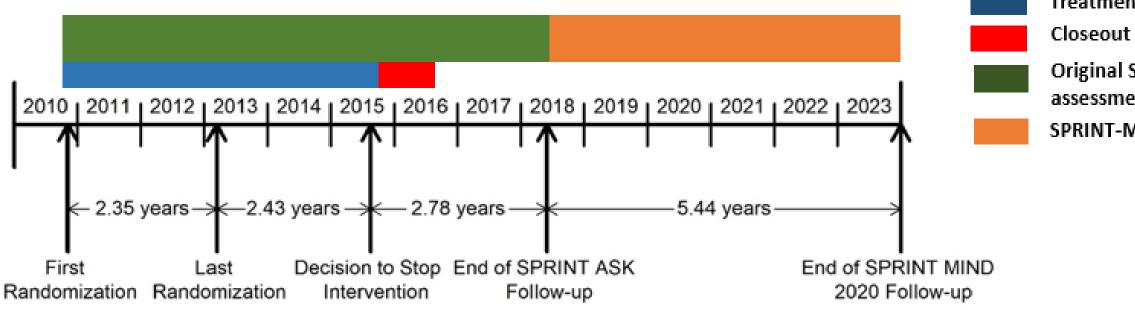

CONCLUSION - 1

Real world data from registries of patients receiving anti-amyloid antibody treatments are needed to determine the risks and benefits among patients with MCCs.

MODIFIABLE ADRD RISK FACTORS

Population attributable fraction of potentially modifiable risk factors for dementia

Common conditions among persons with ADRD include:


- Hypertension (84%)
- Hyperlipidemia (67%)
- Depression (41%)
- Diabetes (37%)

NIA R13 MCC & ADRD March 2025

s among nclude: %) 7%)

Zhang, 2025

SYSTOLIC BLOOD PRESSURE INTERVENTION TRIAL (SPRINT) MIND 2020 - TIMELINE

NIA R13 MCC & ADRD March 2025

Treatment phase (mean 3.3 years)

Original SPRINT-MIND Cognitive assessment (mean 5 years) SPRINT-MIND 2020 assessment

SPRINT MIND 2020 OUTCOMES

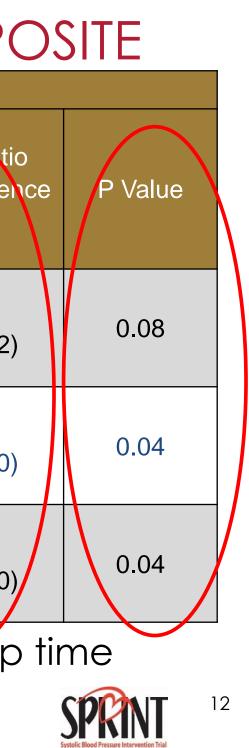
RESEARCH ARTICLE

Long-Term Effect of Intensive vs Standard Blood Pressure Control on Mild Cognitive Impairment and **Probable Dementia in SPRINT**

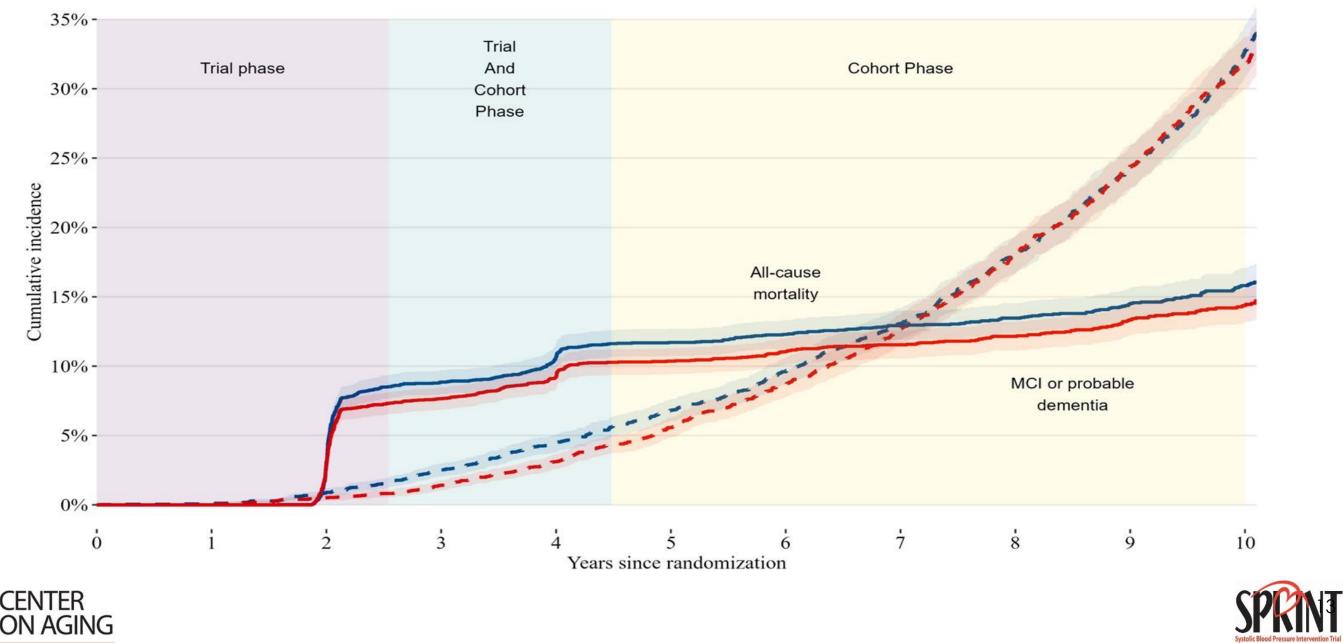
David M. Reboussin,¹ Sarah A. Gaussoin,¹ Nicholas M. Pajewski,¹ Byron C. Jaeger,¹ Bonnie Sachs,² Stephen R. Rapp,³ Mark A. Supiano,⁴ Maryjo L. Cleveland,⁵ Valerie Hunter,⁵ Jamehl L. Demons,⁵ Paula K. Ogrocki,⁶ Alan Jay Lerner,⁶ Gordon J. Chelune,⁷ Virginia G. Wadley,⁸ Margaret L. Scales,⁹ Nancy F. Woolard,⁵ Letitia H. Perdue,¹ Kathryn E. Callahan,⁵ and Jeff D. Williamson⁵

Correspondence Dr. Reboussin drebouss@wakehealth.edu

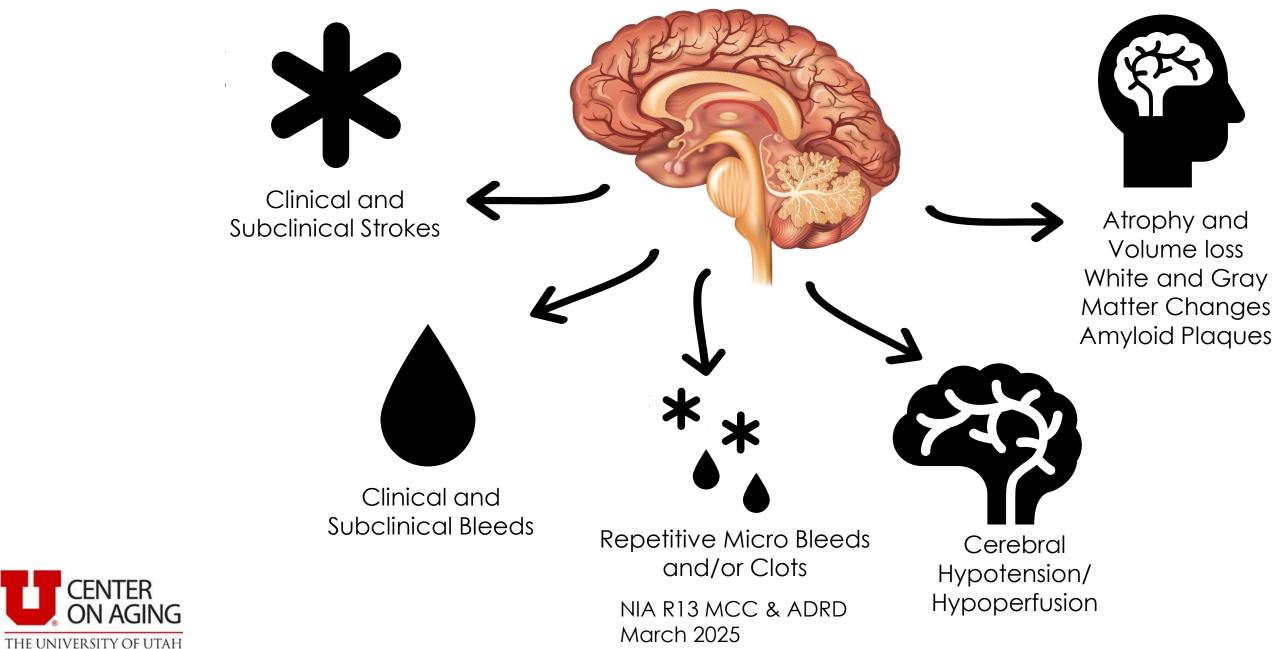
Neurology® 2025;104:e213334. doi:10.1212/WNL.000000000213334



OVERALL LEGACY RESULTS: INCIDENCE OF PROBABLE DEMENTIA, MCI AND THE COMPOSITE


	Intensive	Treatment	Standard	Treatment	
Outcome	No. With Outcome / Person-Years	Cases per 1000 Person- Years	No. With Outcome / Person-Years	Cases per 1000 Person- Years	Hazard Rati 5% Confide Interval)
Probable dementia	248 / 29,122	8.5	293 / 28,855	10.2	0.86 (0.72, 1.02
MCI	380 / 27,075	14.0	430 / 26,465	16.2	0.87 (0.76, 1.00)
MCI or Probable dementia	555 / 27,622	20.1	622 / 27,117	22.9	0.89 (0.79, 1.00)

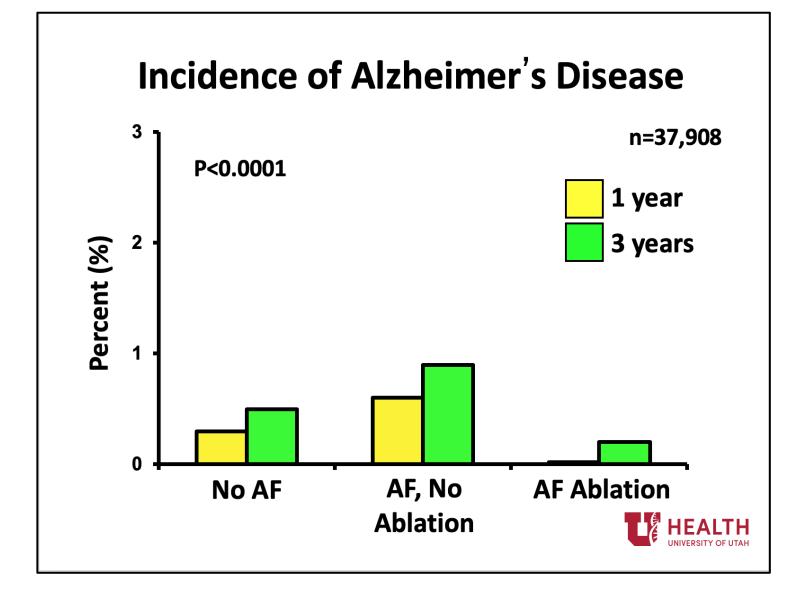
*3.3 years of intensive treatment, 6.9 years median follow-up time



CUMULATIVE INCIDENCE WITH ALL-CAUSE MORTALITY Treatment - Standard - Intensive

THE UNIVERSITY OF UTAH

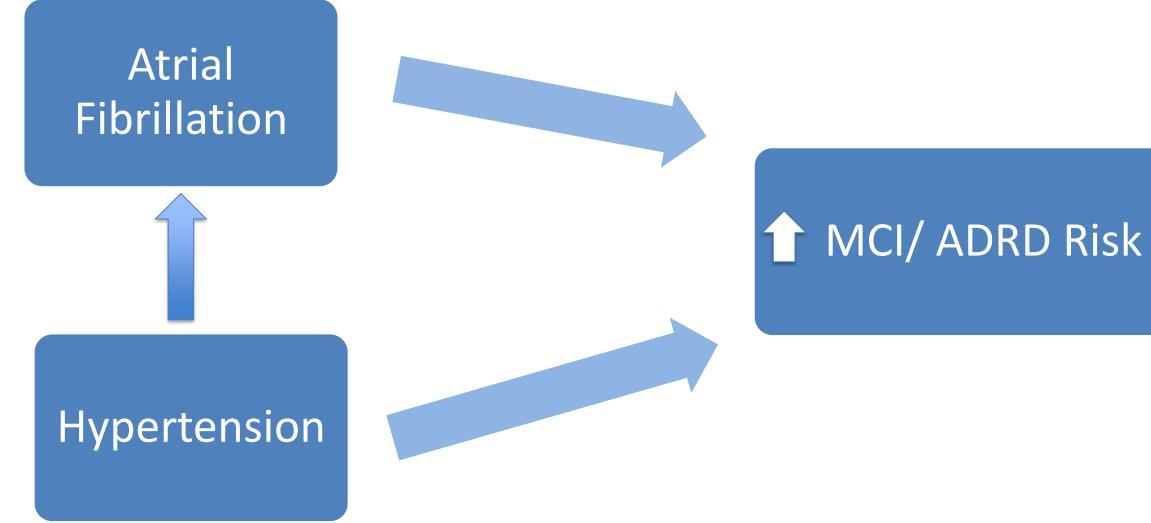
SPECTRUM OF BRAIN INJURY IN PATIENTS WITH ATRIAL FIBRILLATION



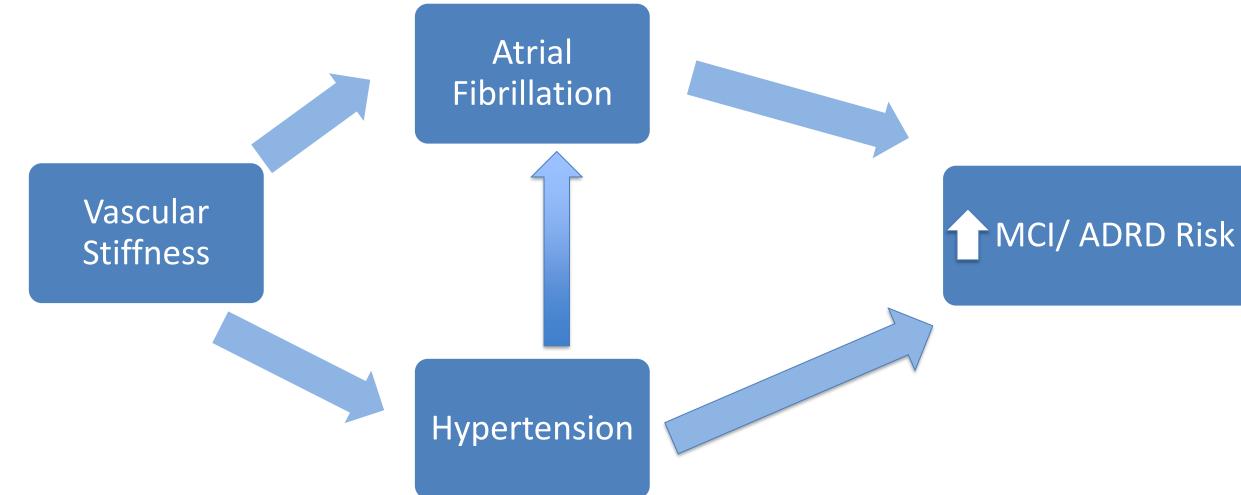
Arrhythm Electrophysiol Rev. 2019; 8(1):8-12

14

CATHETER ABLATION FOR ATRIAL FIBRILLATION



- Alzheimer's Disease incidence is high in A Fib patients
- AD incidence in A Fib patients post ablation was comparable to the no A Fib group
- Other forms of dementia were also significantly less.


Bunch, 2011

MCC AND ADRD RISK

VASCULAR STIFFNESS, MCC AND ADRD RISK

VASCULAR STIFFNESS AND ADRD RISK

Vascular Stiffness

MCI/ ADRD Risk

Hughes, AAIC, 2025 under review

CONCLUSION - 2

- Improved recognition and management of lifestyle factors and MCC, especially CV conditions, is an effective treatment strategy to reduce ADRD risk.
- Vascular stiffness may play a mechanistic role in the associations between CV MCCs and ADRD.

