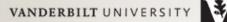


Blood Brain Barrier in Delirium

U13 Delirium Conference


Christopher G. Hughes, M.D. Assistant Professor Department of Anesthesiology Division of Critical Care

Disclosures

• Current funding

VANDERBILT UNIVERSITY

- Vanderbilt CTSA UL1 RR024975
- NIH 1R01HL111111-01A1
- Other financial relationships
 - Honorarium from Orion Pharma
- Conflicts of interests
 - None

Outline

- Blood brain barrier physiology and pathophysiology in acute illness
- Astrocyte damage and delirium
- Endothelial dysfunction and delirium
- Limitations
- Future directions

BBB and Brain Parenchyma

Image removed for copyright

VANDERBILT UNIVERSITY

Blood Brain Barrier Function

- Protects the brain through selective permeability
 - When damaged, allows inappropriate passage of molecules from the plasma into the CNS and from the CNS into the plasma
 - Biomarkers of neurologic injury in the plasma may result from direct damage to the BBB of from direct neuronal damage leading increased diffusion through the BBB

VANDERBILT UNIVERSITY

Altered BBB Permeability

- In vitro studies have shown IL-1β and VEGF-A increase BBB permeability
- VEGF increases BBB permeability after ischemia in rats
- Circulating TNF-α increased BBB permeability in mouse model of *E coli* and *Strep pneumo* sepsis
- Permeability changes in multiple rat sepsis models
- Procalcitonin, IL-8, and CRP have been associated with acute brain dysfunction in critically ill patients
 - Via BBB permeability?

Tsao N et al. *J Med Microbiol.* 2001; 50: 812-21 Argaw A et al. *J Immunol.* 2006; 177: 5574-84 Van den Boogaard M et al. *Crit Care.* 2011; 15: R297 Zhang ZG et al. *J Cereb Blood Flow Met.* 2002; 22: 379-92

BBB Permeability with Increasing Age

Image removed for copyright

VANDERBILT UNIVERSITY

Brain's Response

- Production of cytokines, cell infiltration, and tissue damage
- Altered patterns of neuronal activity by modulating synthesis of neurotransmitters and changing expression of neurotransmitter receptors
 - Clinical symptom = delirium?

Mostly based on animal and autopsy data

Signalling in Pathological Conditions

Image removed for copyright

VANDERBILT UNIVERSITY

Astrocyte Injury

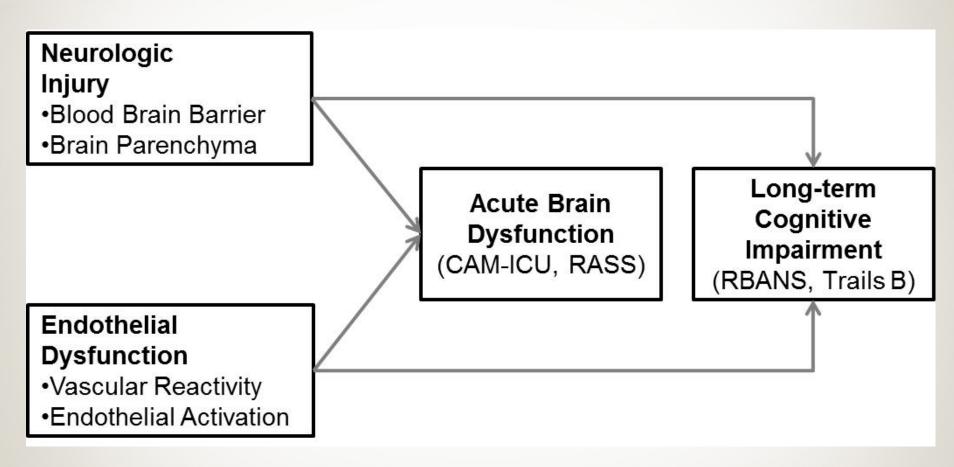
- S100B is expressed and secreted by astrocytes after CNS injury/ischemia and cell death
 - Plasma S100B validated as a measure of BBB injury against CSF-serum albumin ratios and MRI
 - Correlate with endothelial cell structural changes in cortical biopsy specimens
 - Plasma levels increases in brain trauma, ischemia, toxic injury, and neurodegenerative diseases
 - Exact function unknown, may be involved in neuronal and glial growth, proliferation, and activation
 - Values may differ depending on the assay used

Cata JP et al. *BJA*. 2011; 107: 844-58 Blyth BJ et al. *J Neurotrauma*. 2009; 26: 1497-1507 Kanner AA et al. *Cancer*. 2003; 97: 2806-13 Kochanek PM et al. *Curr Opin Crit Care*. 2008; 14: 135-41

S100B and Elderly

- Levels correlated with delirium (CAM) in 120 elderly hip fracture patients
 - Highest levels during delirium, but before and after were also higher than non-delirious patients
- Image removed for copyright

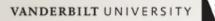
S100B and Septic Encephalopathy


- 170 patients with severe sepsis or septic shock
- S100B and NSE measured daily x 4 days
- Encephalopathy determined by ICU physician
- Elevated levels of S100B were associated with low consciousness (coma, stupor, somnolence) encephalopathy (p=0.004), brain lesions, and mortality (p=0.04)
- NSE failed to predict outcome

School of Medicine

VANDERBILT UNIVERSITY

VANDERBILT UNIVERSITY


Our Studies

S100B and Delirium

- Prospective cohort of 134 patients in shock or respiratory failure
- Median age 57 years, median APACHE II of 26 with 2 days of severe sepsis
- Median ICU LOS of 5 days
- Measured S100B at enrollment
- Daily RASS and CAM-ICU assessments
- Manuscript with results pending

Endothelial Dysfunction Hypothesis

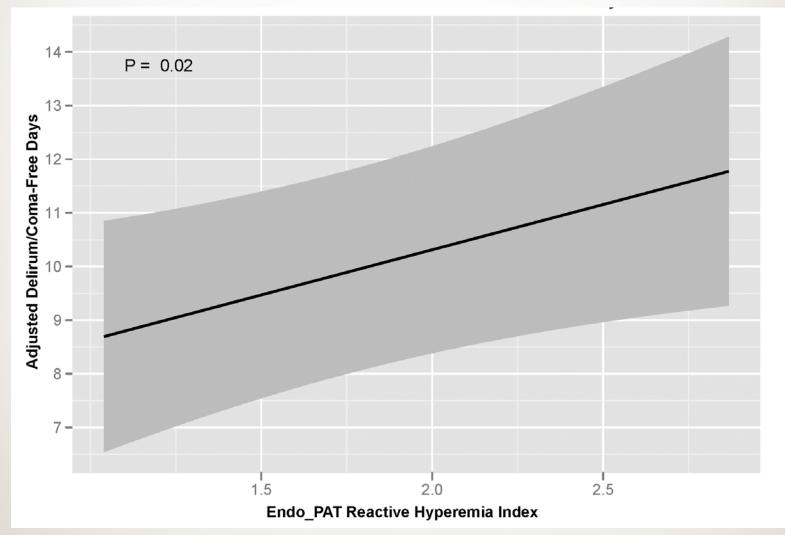
- Impaired perfusion
- Altered permeability
- Toxin exposure
- Neuronal injury

Image removed for copyright

Endothelium Pathophysiology

- Upregulation of inducible nitric oxide synthase and superoxide production in brains of septic mice
- Hypoxia leads to activation of protein kinase C and BBB endothelial cell permeability changes via tight junction protein phosphorylation
- E-selectin associated with BBB leukocyte adhesion and BBB dysfunction in septic mice
- Structural and functional alterations of BBB endothelial cells associated with microvascular permeability and impaired microcirculation

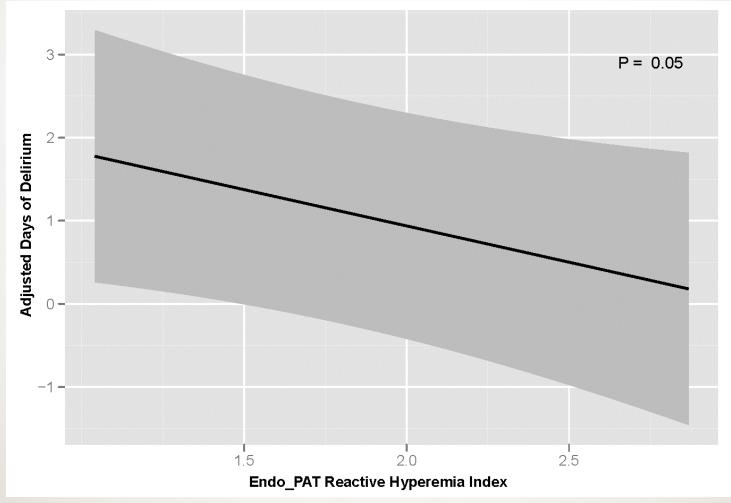
Yokoo H et al. *PLOS One*. 2012; 7: e51539 Fleegal MA et al. *Am J Physiol Heart Circ Physiol*. 2005; 289: H2012-19 Vachharajani V et al. *Obesity*. 2011; 20: 498-504 Gavins F et al. *Microcirculation*. 2007; 14: 681-7 Vajtr D et al. *Physiol Res*. 2009; 58: 263-8



Endothelial Dysfunction Study

- Prospective cohort of 134 patients in shock or respiratory failure
- Median age 57 years, median APACHE II of 26 with 2 days of severe sepsis and 5-day ICU stay
- Measured endothelial vascular reactivity with peripheral artery tonometry at enrollment
- Daily RASS and CAM-ICU assessments

VANDERBILT UNIVERSITY



Hughes CG et al. Anesthesiology. 2013; 118: 631-9

VANDERBILT UNIVERSITY

School of Medicine

Vasc Reactivity vs. Delirium Duration

Hughes CG et al. Anesthesiology. 2013; 118: 631-9

Endothelial Activation

- Measured endothelial activation with PAI-1, Eselectin, Ang-2 at enrollment of previously described cohort
- Manuscript with results pending

Mediation

- Adjustment for BBB injury in systemic endothelial dysfunction models to assess if BBB injury mediates association between endothelial vascular reactivity and activation with acute brain dysfunction
- Manuscript with results pending

Endothelial Modulation and Brain Dysfunction

- Physical therapy (PT) has been shown to improve endothelial function in outpatients and reduce delirium duration in ICU patients
- Hypotheses:

VANDERBILT UNIVERSITY

- Improvement in endothelial function over time is associated with less brain dysfunction in ICU patients
- Early PT is associated with improvement in endothelial function in ICU patients

ACT Endo Function Study

- Prospective cohort study of 72 patients nested within a RCT of early PT versus usual care in adult medical and surgical ICU patients with shock or respiratory failure
- Endothelial vascular reactivity was assessed at enrollment and at 7 days or hospital discharge via peripheral artery tonometry
- Daily RASS and CAM-ICU assessments
- Manuscript with results pending

Limitations

- Functional assessment of the BBB is limited by anatomical characteristics and current technology
 - MRI: complicated scanning protocols, including dynamic contrast enhanced MRI, long scanning sessions, difficult algorithms
- CSF to serum albumin quotient to determine BBB permeability is invasive and impractical
 - Elevated in elderly at baseline
 - Necessitates use of plasma biomarkers
- Transcranial doppler and near-infrared spectroscopy
 - Large vessels and superficial structures
 - Microdialysis assessment invasive

Limitations

- Functional assessment of the BBB is limited by anatomical characteristics and current technology
 - MRI: complicated scanning protocols, including dynamic contrast enhanced MRI, long scanning sessions, difficult algorithms
- CSF to serum albumin quotient to determine BBB permeability is invasive and impractical
 - Elevated in elder at baseline
 - Necessite as use of plasma biomarkers
- Traps anial Doppler and near-infrared spectroscopy
 - C-Large vessels and superficial structures
 - Microdialysis assessment invasive

VANDERBILT UNIVERSITY

Future Assessment

- "Post-pre" and "linear dynamic" methods with MRI
 - Semi-quantitative permeability assessment
 - Localization of dysfunctional BBB
 - Partial dynamic imaging protocol with easier to apply algorithms
- Surrogate markers
 - Is there a better indicator of BBB function?
 - Does systemic endothelial dysfunction = cerebral endothelial dysfunction?

Therapeutic Options for BBB

 Improved BBB disruption in animal models of sepsis, neoplasm, and seizure

Heme oxygenase-1 Magnesium Immunoglobulins Anti-epileptics Steroids Calcium channel blockers Free radical scavenging ARBs

Esen F et al. *Crit Care*. 2005; 9: R18-23 Esen F et al. *Crit Care Med*. 2012; 40: 1214-20 Gurses C et al. *Brain Res*. 2009; 1281: 71-83 Gurses C et al. *Brain Res*. 2013; 1494: 91-100 Cucullo L et al. *Brain Res.* 2004; 997: 147-51 Turkel NA et al. *Int J Neurosci.* 2004; 114: 517-28 Brown RC et al. *Am J Cell Physiol.* 2004; 286: C1045-52 Yokoo H et al. *PLOS One.* 2012; 7: e51539 Fleegal-DeMotta MA et al. *J Cereb Blood Flow Metab.* 2009; 29: 640-7

Therapeutic Options for BBB

- Early Mobility
 - Serial measurements of S100B, endothelial vascular reactivity, endothelial activation in larger mobility cohorts with delirium monitoring
- Statin Pharmacotherapy
 - Known modifiers of the endothelium and reduce inflammation
 - May be protective of delirium
 - Measure S100B, endothelial vascular reactivity, and endothelial activation in upcoming RCTs of statin vs. placebo

VANDERBILT UNIVERSITY School of Medicine

Key Points

- Both BBB injury and endothelial dysfunction are independently associated with acute brain dysfunction during critical illness
- BBB injury does not appear to mediate the effects of endothelial dysfunction on acute brain dysfunction
 - Perfusion, autoregulation, and permeability separate with regards to delirium?
- Many potential routes of future investigation, including therapeutic trials, high-risk populations, long-term outcomes

Acknowledgements

BH Robbins Scholars Program

- Pratik Pandharipande, MD, MSCI
- Warren Sandberg, MD, PhD
- Edward Sherwood, MD, PhD
- Wes Ely, MD, MPH

ICU Delirium Study Group

- Timothy Girard, MD, MSCI
- Nathan Brummel, MD
- Eduard Vasilevskis, MD
- Alessandro Morandi, MD
- Ayumi Shintani, PhD
- Jennifer Thompson, MPH

Funding

- FAER MTRG
- Vanderbilt CTSA UL1 RR024975
- Innovation Grant
- NIH 5R01AG027472-05S1
- NIH 1R01HL111111-01A1

VANDERBILT UNIVERSITY

Questions?

