Monitoring, Diagnosis and Mitigation of Cardiotoxicity

Daniel Lenihan, MD President, International Cardio-Oncology Society

Presenter Disclosure Information NIA 10.2021

•I will not discuss off label use or investigational use in my presentation.

•I have financial relationships to disclose:

-Research support from: Myocardial Solutions, Inc

-Consultant (modest): AstraZeneca, BMS, OncXerna, Clementia, Eidos

How/why did Cardio-Oncology get started? Because cardiac safety is a major concern wherever you are

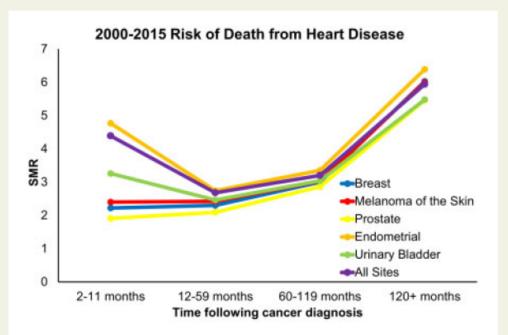
Increased Risk Of Fatal Side Effects From 3 'Targeted' Cancer Drugs

Medical News Today

Treatment with three relatively new "targeted" <u>cancer</u> drugs has been linked to a slightly elevated chance of fatal side effects, according to a new analysis led by scientists at Dana-Farber Cancer Institute.

http://www.medicalnewstoday.com/releases/241256.php

European Heart Journal (2019) 0, 1-9 European Society doi:10.1093/eurheartj/ehz766


of Cardiology

A population-based study of cardiovascular disease mortality risk in US cancer patients

Kathleen M. Sturgeon () ^{1†}, Lei Deng^{2†}, Shirle Daniel M. Trifiletti³, Changchuan Jiang⁴, Scot

¹Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA; ²C Medicine, Bronx, NY, USA; ³Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, New York City, NY, USA; ⁵Division of Cancer Epidemiology and Genetics, National Institutes State Cancer Institute, Hershey, PA, USA

Received 6 December 2018; revised 8 April 2019; editorial decision 8 October 2019; accepted 8 Octo

Take home figure Standardized morality ratios for cancer sites with both \leq 30% risk of death from the index-cancer and \geq 20% risk of mortality from heart disease were calculated and binned by follow-up time. Cancers sites with at least 1000 person years of risk for death from heart disease between 2000 and 2015 were displayed.

Just look at the developments over the last 45 years.....

FIG 1. History of breast cancer treatment: Timeline. Integration of various discoveries that led to changes in the standard of care. Discoveries are displayed by approximate year of incorporation into practice. Al, aromatase inhibitor, APBI, accelerated partial breast irradiation; IMRT, intensity-modulated radiotherapy; LHRH, luteinizing hormone-releasing hormone; RT, radiotherapy; SERM, selective estrogen receptor modulator; T-DM1, trastuzumab emtansine.

	Stage					
Localized	Regional	Distant				
85	53	< 10				
99	85	27				
	85	85 53				

FIG 3. Five-year relative survival rates for breast cancer: 1973-2019. Numbers represent 5-year relative survival figures. The change between 1973 and 2019 reflects the progress in detection and treatment. Data are given as percent 5-year survival.

Breast Cancer: 45 Years of Research and Progress Gabriel N. Hortobagyi, MD; https://doi.org/10.1200/JCO.20.00199

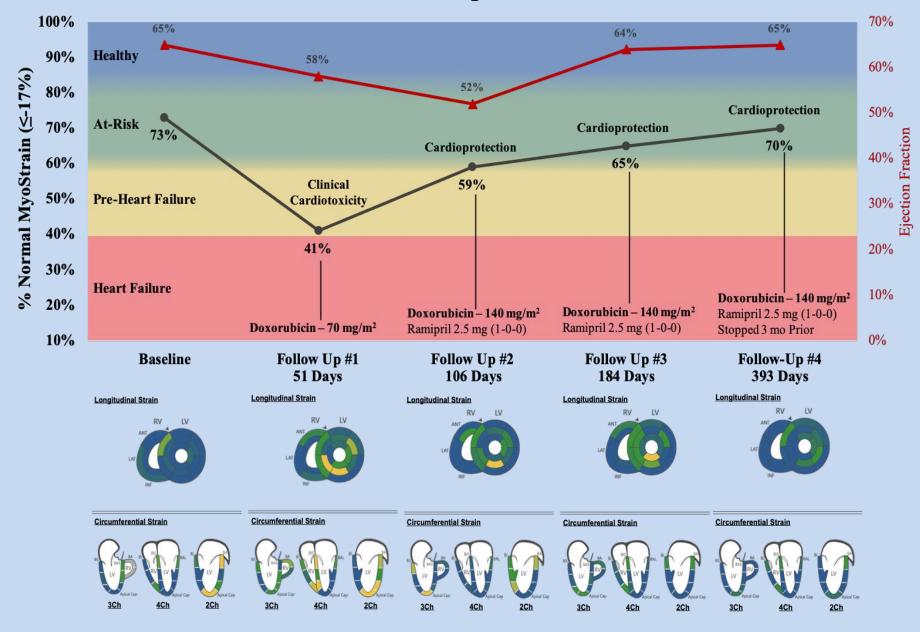
Timeline of pivotal events in the development of myeloma therapeutics.

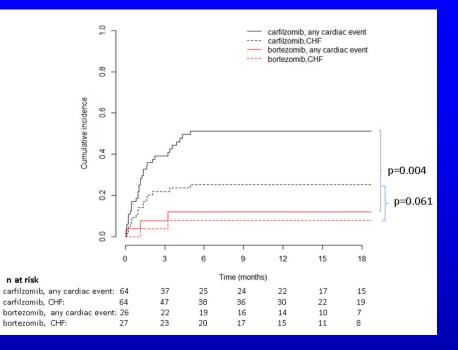
1840s	1940s	1960s	1980s	1990s	2000s	2010s	2015
Case reports Bence Jones protein	Cardinal signs of myeloma reported	Melphalan + prednisone		Thalidomide Bortezomib Bortezomib/ doxil Lenalidomide Tandem transplant	Carfilzomib Pomalidomide Combinations Maintenance Rx	Daratumumab Elotuzumab Ixazomib Panobinostat	
detected		Dox + Dex	Plerixafor Bisphosphonates				
						© 2016 American Ass	ociation for Cancer Research

CCR Focus

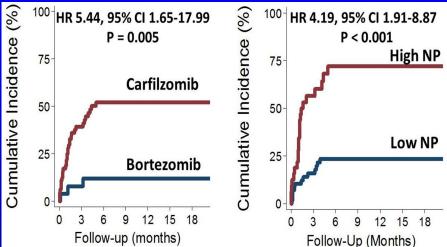
AAGR

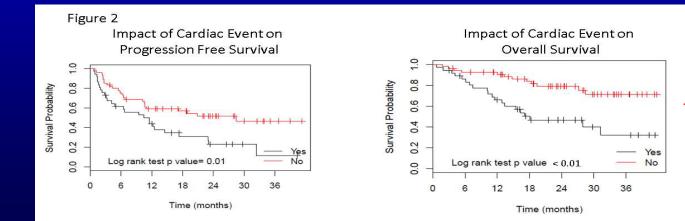
Susan E. Bates Clin Cancer Res 2016;22:5418





Top 10 Priorities for Cardio-Oncology:


- Knowing the Reproducible Predictors of Cardiotoxicity
- <u>Better define Cardioprotective Strategies in patients</u> with Cancer
- Describe the Optimal Management of Thromboembolic Events in patients with Cancer
- Improve the CV Outcomes in Stem Cell Transplant
- Personalization of Cardiovascular Interventions


MRI Strain can improve detection

PROTECT study, JCO Aug 2019, JCO1900231

Cardioprotection improved survival

TABLE 5. Cardiovascular Drugs Showing a Prophylactic Effect Against Anthracycline/Trastuzumab-Induced Cardiotoxicity in Adult Cancer Populations

STUDY	STUDY DESIGN/ FOLLOW-UP	NO. OF PATIENTS	CANCER TYPE	DRUGS	INTERVENTION	RESULTS
ACEI						
Cardinale 2006 ¹³⁷	RCT/12 mo	114	Various	HD CT	Enalapril	No LVEF↓; MACE incidence↓
ARB						
Nakamae 2005 ¹³⁸	RCT/7 d	40	NHL	AC	Valsartan	No LVEDD [†] ; no BNP and ANP [†] ; no QT [†]
Cadeddu 2010 ¹³⁹	RCT/18 mo	49	Various	AC	Telmisartan	No peak strain rate↓; no interleukin 6↑
Aldosterone antagonists						
Akpek 2015 ¹⁴⁰	RCT/6 mo	83	Breast cancer	AC	Spironolactone	No LVEF↓; no TNI and BNP↑
Beta-blockers						
Kalay 2006 ¹⁴¹	RCT/6 mo	50	Various	AC	Carvedilol	No LVEF↓
Kaya 2013 ¹⁴²	RCT/6 mo	45	Breast cancer	AC	Nebivolol	No LVEF and NT-proBNP [↑]
Seicean 2013 ¹⁴³	Retrospective/5 y	318	Breast cancer	AC, TRZ	Beta-blockers	HF↓
ACEI + beta-blockers						
Bosch 2013 ¹⁴⁴	RCT/6 mo	90	Hematological	AC	Enalapril + carvedilol	No LVEF↓; death↓; HF↓
Statin						
Acar 2011 ¹⁴⁵	RCT/6 mo	40	Hematological	AC	Atorvastatin	No LVEF
Seicean 2012 ¹⁴⁶	Retrospective/5 y	67	Breast cancer	AC	Statins	HF↓

↓, decrease; ↑, increase; ACEI, angiotensin-converting enzyme inhibitor; ANP, atrial natriuretic peptide; ARB, angiotensin receptor blocker; BNP, brain natriuretic peptide; HD CT, high-dose chemotherapy; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic diameter; HF, heart failure; MACE, major adverse cardiac events; NHL, non-Hodgkin lymphoma; NT-proBNP, N-terminal-probrain natriuretic peptide; QT, QT interval; RCT, randomized controlled trial; TNI, troponin I; TRZ, trastuzumab.

Curigliano, G et al; CA Cancer Clin Journal 2016

Top 10 Priorities for Cardio-Oncology:

- Build the Cardio-Oncology Community
- Define and detect the <u>Adverse Cardiac Events</u> in <u>Immunotherapy</u>
- Understanding of Mechanisms of Multi-Targeted Tyrosine Kinase Inhibitors
- Improvements in Survivorship Care
- How do we move forward?

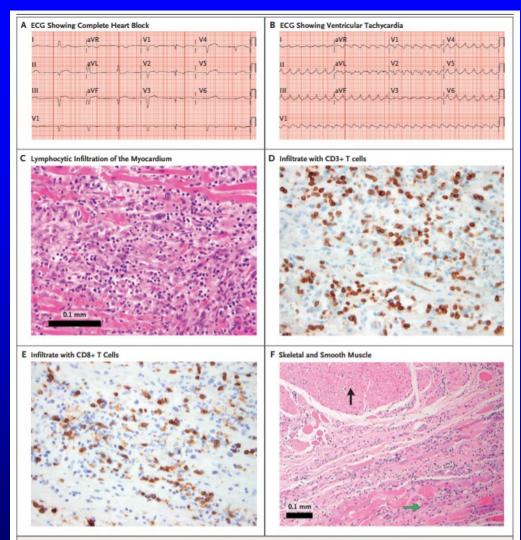
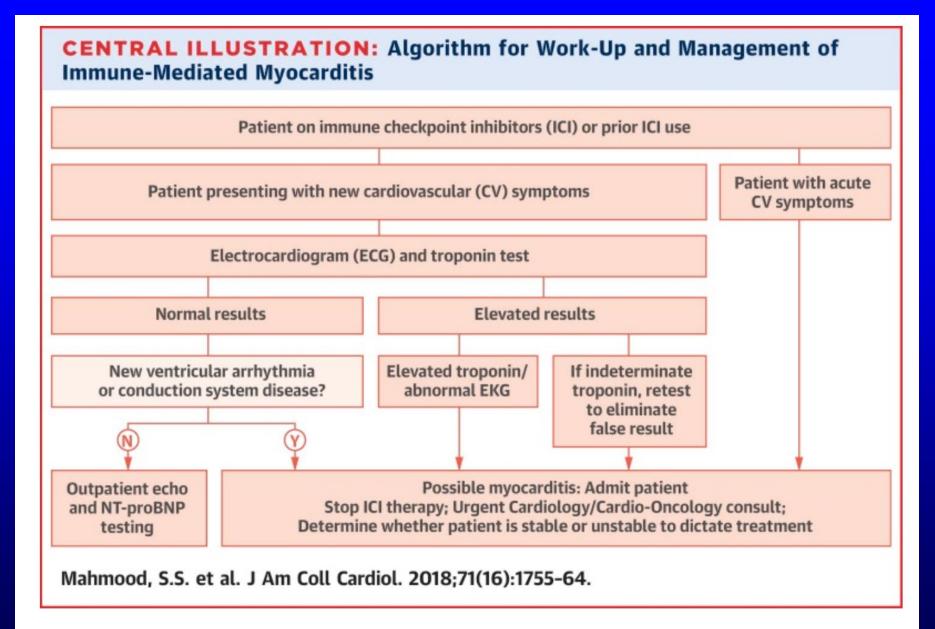


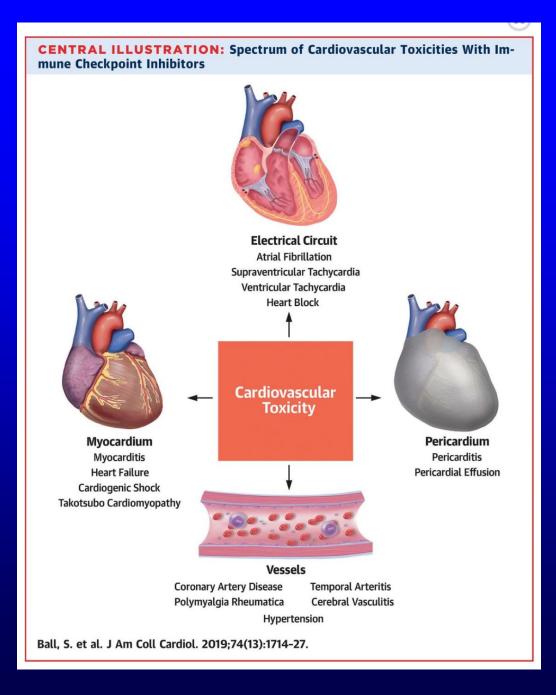
Figure 1. Results on ECG and Immune Effects in Cardiac Muscle after Treatment with Ipilimumab and Nivolumab in Patient 1.

Patient 1 had rapid progression to complete heart block (as shown on electrocardiography [ECG] in Panel A), followed by ventricular tachycardia (Panel B). Autopsy revealed lymphocytic infiltration of the myocardium (shown in the intraventricular septum in Panel C; staining with hematoxylin and eosin). The inflammatory infiltrate included CD3-positive T lymphocytes (Panel D), many of which were positive for CD8 (Panel E). Only cardiac and skeletal muscle was affected; smooth muscle and other tissues were spared (Panel F, hematoxylin and eosin). The black arrow points to esophageal smooth muscle without immune infiltration, and the green arrow points to esophageal skeletal muscle, which is heavily infiltrated by immune cells.

Combination checkpoint inhibitors may have important cardiac effects

 Table 1. Incidence of Myocarditis and Myositis in

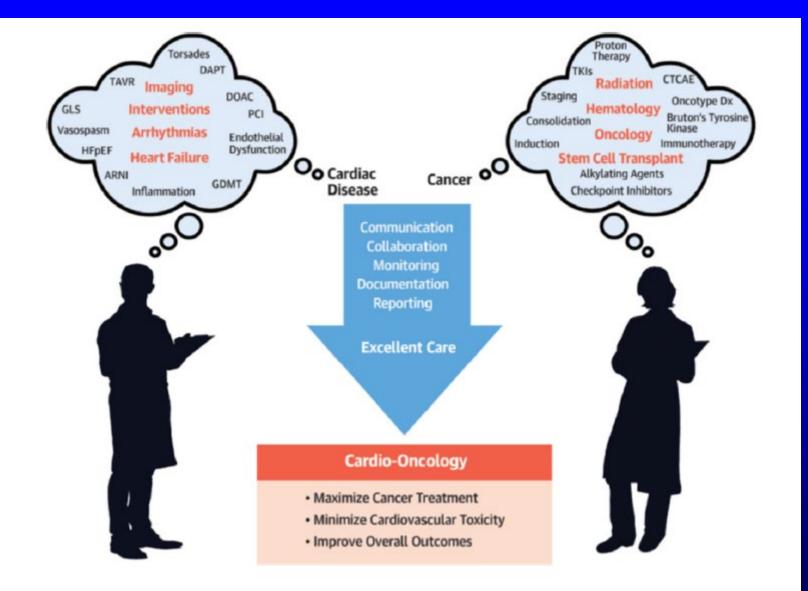

 Patients Receiving Nivolumab or Ipilimumab plus


 Nivolumab.

Characteristic	Nivolumab (N=17,620)	Nivolumab plu Ipilimumab (N=2974)		
	no	. (%)		
Myocarditis				
Any*	10 (0.06)	8 (0.27)		
Fatal events	1 (<0.01)	5 (0.17)		
Myositis				
Any	27 (0.15)	7 (0.24)		
Fatal events	2 (0.01)	1 (0.03)		

* The number of patients with myocarditis includes six patients with concurrent myocarditis and myositis.

N Engl J Med 2016;375:1749-55. DOI: 10.1056/NEJMoa1609214



SPECIAL ARTICLE

Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations

¹³ G. Curiglian^{1,2†}, D. Lenihan^{3†}, M. Fradle⁴, S. Ganatra⁵, A. Bara⁶, A. Blae⁷, J. Herrmann⁸, C. Porter⁹, A. R. Lyon¹⁰, P. Lancellotti¹¹, A. Patel¹², J. DeCara¹³, J. Mitchell¹⁴, E. Harrison¹⁵, J. Moslehi¹⁶, R. Wittele¹⁷, M. G. Calabro¹⁸, R. Orecchia¹, E. de Azambuja¹⁹, J. L. Zamoran²⁰, R. Kron²¹, Z. Iakobishvili²², J. Carver²³, S. Armenian²⁴, B. Ky²⁵, D. Cardinale¹, C. Cipolla¹, S. Den²⁶, K. Jordan²⁷, on behalf of the ESMO Guidelines Committee^{*}

Feb 2020

Journal of Translational Research 2020, p495-505

A CardioOncology

An Open Access Journal

Leading Cardiovascular Science and Clinical Care for Our Cancer Patients

- Open Access
- Publishing Quarterly
- Sign Up for Content Alerts
 - Submit Your Paper to JACCSubmit-CardioOncology.org

JACC.org/CardioOncology

• For more information: www.IC-OS.org

directoricos@gmail.com