Aging of the Cardiovascular System

Implications for Gero-Cardio-Oncology management

Daniel E. Forman, M.D.

Professor of Medicine, University of Pittsburgh

Chair, Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh Medical Center Director of Translational Research, Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System Associate Director for Clinical Translation and Director of Emerging Therapeutics, Aging Institute, University of Pittsburgh Director, Transitional Care (Cardiac Rehabilitation, GeroFit, C-TraC, COMPASS), VA Pittsburgh Healthcare System

• No disclosures

↑ CVD with Aging

NHANES III

↑ CVD with Age: Driven by Biological Changes

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Myocardial ischemia

Diminished perfusion

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Myocardial ischemia

Diminished perfusion

Myocardial ischemia

Diminished perfusion

Harvey A, et al. Can J Cardiol. 2016;32:659e668

Donato AJ, et al. Circ Res. 2018;123:825-48

Donato AJ, et al. Circ Res. 2018;123:825-48

Donato AJ, et al. Circ Res. 2018;123:825-48

Ungvari Z, et al. J Am Coll Cardiol. 2020;75:931-41

Cardiovascular Coupling

Cardiovascular Coupling

Paneni F, et al. J Am Coll Cardiol. 2017;69:1952–67

Paneni F, et al. J Am Coll Cardiol. 2017;69:1952-67

Physiologic Changes

Clinical Implications

Cardiac structure and function

LV composition and mass

- $\downarrow \downarrow$ numbers of myocytes
- **^** myocyte hypertrophy
- 1 deposition of collagen, fibrous tissue, amyloid, and lipofuscin within connective tissue

LV wall thickness, cavity size, and shape

- **1** myocardial thickness
- **↑**↑ concentric LVH
- 1 interventricular wall thickness
- ↑ spherical LV shape

Left Heart Valves

- ↑ calcium deposition & collagen infiltration
- ↑ myxomatous degeneration
- ↑ fixation of valvular leaflets

LV function

- \downarrow early diastolic peak filling
- \uparrow LV filling facilitated by atrial contraction
- 1 late LV filling
- **†** LVEDP during exercise

Left Ventricle

- 1 LV stiffness and fibrosis
- \uparrow LV hypertrophy and diastolic volume
- **1** susceptibility to myocardial ischemia
- ↑↑ LV dysfunction and heart failure
- ↑ susceptibility to ventricular ectopy

Left Atrium

• ↑ susceptibility to atrial fibrillation

Left Heart Valves

- ↑ aortic sclerosis and stenosis
- \uparrow mitral annular calcification
- \uparrow mitral and aortic regurgitation

Obas V, Vasan RS. Clinical Science;2018:1367–82

Obas V, Vasan RS. Clinical Science;2018:1367–82

Obas V, Vasan RS. Clinical Science;2018:1367–82

Age: CVD with Cumulative Disease and Vulnerability

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Age: CVD with Cumulative Disease and Vulnerability

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Age: CVD with Cumulative Disease and Vulnerability

	Physiologic Changes	Clinical Implications
Compounding physiological changes	 ↓Cardiovascular reserves ↓Function compounded by multimorbidity ↑Polypharmacy ↑Sarcopenia ↑Changes in fat distribution 	 ↓Muscle function ↑Exercise intolerance ↑Fatigue ↓Activity ↓Functional independence ↓Quality of life
	• Întramuscular fat	● ↑ Frailty

• **†**Disability

• ↓ Cardiorespiratory fitness (peak oxygen uptake[VO₂])

Distinctive Age-Related Vulnerabilities to Cardiac Pathophysiology

Gadde KM, J Am Coll Cardiol. 2018;71:69-84

Geriatric Cardiology

- Diagnosis
 - Multimorbidity
- Risk Assessment
 - Multimorbidity
 - Frailty
 - Cognition
 - Biological
- Disease Management
 - Multimorbidity, Frailty, Cognition
 - Pharmacology
 - Function, Falls
 - Quality of life

- Process of care
 - Shared Decision Making
 - Transfers
 - Independence
 - Access
 - Palliative Care
- Psychosocial
 - Health Literacy
 - Disparities

Geriatric Cardiology

- Diagnosis
 - Multimorbidity
- Risk Assessment
 - Multimorbidity
 - Frailty
 - Cognition
 - Biological
- Disease Management
 - Multimorbidity, Frailty, Cognition
 - Pharmacology
 - Function, Falls
 - Quality of life

- Process of care
 - Shared Decision Making
 - Transfers
 - Independence
 - Access
 - Palliative Care
- Psychosocial
 - Health Literacy
 - Disparities

Ferrucci L, Fabbri E. Nat Rev. 2018; 15::505-22

Ferrucci L, Fabbri E. Nat Rev. 2018; 15::505-22

Diminished cardiovascular reserves

Multiple clinicians and providers, each with their own priorities of care

Diminished cardiovascular reserves

Armenian SO, et al. J Clin Oncol 34:1122-30

Calvillo-Argüelles O, et al. JAMA Cardiol. 2019;4:380-7

Reverse Cardio-Oncology: Cancer provoking CVD

- Higher prevalence of cancer incidence in those with CVD
 - HTN: kidney, colorectal, breast, prostate CA
 - Stroke and AF: thromboembolism
- Mechanisms:
 - Inflammation
 - Clonal Hematopoesis
 - Нурохіа
 - Circulating Factors
 - Cardiokines
 - MicroRNA
 - Exosomes
 - Microvesicles

Aboumsallem JP, et al. J Am Heart Assoc 2020;9(2):e013754

Cancer Major drivers

2

AGE

- Mutation(s)
 Age
- Environmental mutagens
 (e.g. smoking)
- Impaired DNA repair

Mechanisms and Mediators Common to Cancer and Atherosclerosis

Atherosclerosis

AGE

Major drivers

Risk factors:

• Age

· LDL

· HBP

. DM

Cardiovascular Toxic Effects of Targeted Cancer Therapies

Javid J. Moslehi, M.D.

Moslehi JJ. N Engl J Med. 2016;375:1457-67

Predictable incidence of CVD for patients with cancer

- Heart failure
 - HFpEF and HFrEF
- Arrhythmia
 - Supraventricular and Ventricular
- Ischemia
 - Supply and Demand
- Pericardial Disease

- Thromboembolic Disease
 - -AF
 - -HF
 - Sedentariness
 - Central catheters
 - Volume depletion
 - Remodeling
 - CA Rx (hormonal Rx, immunomodulatory Rx, blood products)

Predictable incidence of CVD for patients with cancer

- Heart failure
 - HFpEF and HFrEF
- Arrhythmia
 - Supraventricular and Ventricular
- Ischemia
 - Supply and Demand
- Pericardial Disease

Frailty Multimorbidity Polypharmacy

- Thromboembolic Disease
 - -AF
 - -HF
 - Sedentariness
 - Central catheters
 - Volume depletion
 - Remodeling
 - CA Rx (hormonal Rx, immunomodulatory Rx, blood products)

Managing older CA patients with integrated care

- Value of team-based approach, including cardiologist, oncologist and geriatrician
- Relevance of Comorbidity
- Value of surveillance and relevance of biomarkers
 - Traditional (Troponin, BNP), ECG, Echocardiography (strain imaging), Other (Clonal hematopoiesis)
 - Lipids, thyroid, glucose
- Value of preventive care with ACE-inhibitor, beta-blockers, aldosterone-blockers, anticoagulation, tobacco cessation
- Urgency of worsening HF, arrhythmia, HTN
- Careful management of fluids
- Value of sleep, nutrition, and broad approach to wellness
 - Consideration of cardiac rehabilitation
 - Consideration of palliative care
- Dyspnea, Fatigue and other symptoms may have multiple etiologies
 - Broaden differential to include CVD, comorbidities, and geriatric syndromes

Managing older CA patients with integrated care

- Value of team-based approach, including cardiologist, oncologist and geriatrician
- Relevance of Comorbidity
- Value of surveillance and relevance of biomarkers
 - Traditional (Troponin, BNP), ECG, Echocardiography (strain imaging), Other (Clonal hematopoiesis)
 - Lipids, thyroid, glucose
- Value of preventive care with ACE-inhibitor, beta-blockers, aldosterone-blockers, anticoagulation, tobacco cessation
- Urgency of worsening HF, arrhythmia, HTN
- Careful management of fluids
- Value of sleep, nutrition, and broad approach to wellness
 - Consideration of cardiac rehabilitation
 - Consideration of palliative care
- Dyspnea, Fatigue and other symptoms may have multiple etiologies
 - Broaden differential to include CVD, comorbidities, and geriatric syndromes

CVD is predictable in older adults with Cancer

Gilchrist SC., et al. Circulation. 2019;139:e997–e1012

CVD is predictable in older adults with Cancer

Baseline risk factors Obesity, hypertension, age

'Direct' injury Anticancer therapy

'Indirect' injury Secondary to therapy (deconditioning, weight gain)

Sase JM et al. J of Cardiol. 2020;76:559-76

Gilchrist SC., et al. Circulation. 2019;139:e997–e1012

Modified Application of Cardiac Rehabilitation

- Expanding the concept of risk:
- Cardiac, comorbidity, frailty, psychosocial
- Expanding models of process:
- Site-, home-, and hybrid-based models

NCT03922529

Inflammation $\rightarrow \downarrow$ CVD Events

Ridker PM, et al. N Engl J Med. 2017;377:1119-31

Inflammation $\rightarrow \downarrow$ Lung Cancer

- Baseline hsCRP (6.0 mg/L vs 4.2 mg/L; p<0.0001) and IL- 6 (3.2 vs 2.6 ng/L; p<0.0001) significantly higher among participants diagnosed with lung cancer than among those not diagnosed with cancer.
- Canakinumab associated with dose-dependent reductions of Lung CA incidence and mortality

N = 10,061 stable post MI patients; CRP ≥2mg/L; No prior CA

Ridker PM, et al. Lancet. 2017;390:1833-42

Targeting Aging with Metformin (TAME)

Metformin

- Most widely prescribed oral medication for type 2 DM worldwide
 - $-\downarrow$ Cancer incidence and mortality

Barzilai N, Cell Metab. 2016;23:1060-5

Summary

- Aging biologically drives vulnerabilities to intrinsic physiological changes and a continuum to CVD in a context of aggregate complexity
- CVD and Cancer stem from same underlying molecular and environmental risks, and mounting age is a driver to both
- CVD and Cancer each exacerbate incidence and management complexity of each other
- Therapeutics and Prevention (aging and disease) are rising areas of opportunity, both in respect to physiological and subcellular mechanisms of Aging, CVD and Cancer

Thank you

- National Institute on Aging
 - R01 AG060499-01: Modified Application of Cardiac Rehabilitation for Older Adults (MACRO)
 - R01 AG058883: Nitrite therapy to improve mitochondrial bioenergetics and physical activity in older adults (NO-Frail)
 - U19 AG065188: PRagmatic EValuation of evENTs And Benefits of Lipid-lowering in oldEr adults (PREVENTABLE) Study
 - P30AG024827: Pittsburgh Claude D. Pepper Older Americans Independence Center
- Geriatrics, Research, Education and Clinical Care (GRECC), VA Pittsburgh Healthcare System
- Aging Institute, University of Pittsburgh