Diseases and Treatments as Aging Accelerators

Anju Nohria, MD, MSc

Director, Cardio-Oncology Program

Dana Farber Cancer Institute/Brigham and Women's Hospital

Boston, MA

Disclosures

- Research Support Amgen, Inc.
- Consultant AstraZeneca, Boehringer Ingelheim, Takeda Oncology

Increasing Cancer Survivorship

De Moor et al. Cancer Epidemiol Biomarkers Prev. 2013;22(4):561-70.

CV Disease is the Leading Cause of Non-Cancer Related Death in Cancer Survivors

Ann Oncol 2017;28(2):400-7.

Cancer Treatment Associated Cardiotoxicity

Outline

- Pathophysiology of vascular aging
- Potential mechanisms by which cancer therapies may accelerate vascular aging
- Potential therapeutic targets to mitigate cancer-therapy associated vascular aging

Characteristics of Vascular Aging

- Increased arterial stiffness
 - ↑SBP and pulse pressure
 - LV hypertrophy
 - End-organ damage via ↑ pulsatile flow
- Endothelial dysfunction
 - Impaired vasodilation
 - Thrombosis
 - Inflammation
 - Abnormal mitochondrial function and cellular energy metabolism

Mechanisms of Anthracycline Cardiotoxicity

Cardiovascular Drugs and Therapy (2020) 34:255–269

Doxorubicin Increases Vascular Stiffness

Doxorubicin Promotes Endothelial Dysfunction

Aging and Cancer 2021;2:45-69.

Characteristics of Vascular Aging

- Decreased responsiveness to angiogenic stimuli
- Altered expression of genes regulating angiogenesis
- Microvascular rarefaction →
 ↓tissue oxygenation →
 ↓mitochondrial activity→
 metabolic perturbations →
 multi-organ dysfunction

VEGF and VEGF Inhibitors in Cancer

N Engl J Med 2008; 358:2039-2049; Front Immunol 2020;11:598877

Decreased VEGF Signaling Contributes to Vascular Aging

Science 2020; 373:533

Restoration of VEGF Signaling Promotes Healthy Aging and Longevity

Science 2020; 373:533

Inflammation as Mediator of Cancer and CVD

CANTOS Trial: MI + CRP ≥ 2 mg/L; IL-1ß antagonist; Recurrent CV Events

Non-fatal MI, non-fatal stroke or CV death

Incident Lung Cancer

N Engl J Med 2017; 377:1119-1131; Lancet 2017;390:1833-42.

Damage Associated Molecular Patterns and Inflammation

Ther Adv Cardiovasc Dis 2017;11:297-317

DAMP	Cancer type	Treatment	Author(s)	Corresponding PRR(s)
Actin	Lung squamous cell carcinoma/ adenocarcinoma	Photodynamic therapy	Tracy et al. ¹²⁹	DNGR-1 (CLEC9A)
Adenosine	Hairy cell leukemia	Pentostatin (2'-deoxycoformycin)	Johnston ¹³⁰	A1, A2A, A2B, A3
АТР	Bladder carcinoma Colorectal carcinoma and osteosarcoma Colorectal carcinoma and sarcoma Fibrosarcoma Cutaneous melanoma T-cell leukemia	Photodynamic therapy Mitoxantrone and oxaliplatin Various chemotherapeutic agents Doxorubicin Amino acid derivative LTX-401 Ultraviolet light	Garg et al. ¹³¹ Michaud et al. ¹³² Ghiringhelli et al. ¹³³ Ma et al. ¹³⁴ Eike et al. ¹³⁵ Elliott et al. ¹³⁶	P ₂ X ₇ , P ₂ Y ₂
Calreticulin	Bladder carcinoma Bladder carcinoma Colorectal carcinoma Colorectal carcinoma Colorectal carcinoma and osteosarcoma Colorectal carcinoma, cutaneous melanoma, lung carcinoma, esophageal squamous cell carcinoma, and pancreatic carcinoma	Photodynamic therapy Photodynamic therapy Doxorubicin Electrohyperthermia Mitoxantrone and oxaliplatin Various chemotherapeutic agents	Garg et al. ¹³¹ Garg et al. ¹³⁷ Obeid et al. ¹³⁸ Andocs et al. ¹³⁹ Michaud et al. ¹³² Yamamura et al. ¹⁴⁰	CD91, scavenger receptors (LOX-1, SREC-1, and FEEL- 1/CLEVER-1)
Cytochrome c	Cutaneous melanoma Lung squamous cell carcinoma/ adenocarcinoma	Amino acid derivative LTX-401 Photodynamic therapy	Eike <i>et al.</i> ¹³⁵ Tracy <i>et al.</i> ¹²⁹	Unknown
45P60 45P70	Squamous cell carcinoma Bladder carcinoma Colorectal carcinoma Colorectal carcinoma Lung squamous cell carcinoma/ adenocarcinoma Prostate adenocarcinoma	Photodynamic therapy Photodynamic therapy Oxaliplatin and 5-fluorouracil Electrohyperthermia Photodynamic therapy Heating and UVC irradiation	Korbelik et al. ¹⁴¹ Garg et al. ¹³⁷ Fang et al. ¹⁴² Ma et al. ¹³⁴ Tracy et al. ¹²⁹ Brusa et al. ¹⁴³	CD91, scavenger receptors (LOX-1, SREC-1, & FEEL-1/ CLEVER-1), TLR2, TLR4
	Squamous cell carcinoma	Photodynamic therapy	Korbelik et al.141	
HSP90	Colorectal carcinoma Lung squamous cell carcinoma/ adenocarcinoma	orectal carcinoma Electrohyperthermia Ma <i>et al.</i> ¹³⁴ 1g squamous cell carcinoma/ Photodynamic therapy Tracy <i>et al.</i> ¹²⁹ 2nocarcinoma		
00070 (0:0)	Myeloma cells	Bortezomib	Spisek et al.144	
GRP78 (BIP) GP96 (GRP94)	Squamous cell carcinoma Squamous cell carcinoma	Photodynamic therapy Photodynamic therapy	Korbelik et al. ¹⁴¹	
HMGB1	Colorectal carcinoma Colorectal carcinoma Colorectal carcinoma	Doxorubicin and linoleic acid Electrohyperthermia Oxaliplatin and 5-fluorouracil	Luo et al. ¹⁴⁵ Ma et al. ¹³⁴ Fang et al. ¹⁴²	RAGE. TIM3, TLR2, TLR4, TLR9

Potential Therapeutic Targets To Reduce Negative Impact of Oxidative Stress

Therapeutics	Description
Mitochondria-targeted compounds	
MitoQ	Mitochondria-targeted antioxidant
SS-31	Mitochondria-targeted peptide
Urolithin-A	Gut microbiome-derived mitophagy activator
Dexrazoxane	Mitochondria DNA damage inhibitor
NAD ⁺ boosting compounds	
Nicotinamide mononucleotide	NAD ⁺ salvage pathway activator
Nicotinamide riboside	NAD ⁺ salvage pathway activator
CD-38 inhibitors	
Apigenin	Food-derived (flavonoid) CD-38 inhibitor
Daratumumab	Synthetic CD-38 inhibitor
Thiazologuin(az)olin(on)e	Synthetic CD-38 inhibitor

Sirtuin activators		
Resveratrol	Food-derived (plant polyphenol) sirtuin activator	
SRT1720	Synthetic sirtuin activator	
PARP inhibitors		
Nicotinamide	Inhibits PARP and increases NAD ⁺ bioavailability	
Rucaparib	Inhibits PARP and increases NAD ⁺ bioavailability	
AMPK activator		
AICAR	AMP analog (increases circulating AMP)	
mTOR inhibitor		
Rapamycin	Immunosuppressive compounds that inhibit mTOR	

Summary

- Cardiovascular disease is a significant cause of morbidity and mortality in cancer survivors
- Many cancer therapies are associated with cardiotoxicity
- Cancer therapies can lead to increased oxidative stress and inflammation that may promote vascular aging
- A better understanding of these mechanisms is needed to identify therapeutic targets to reduce cancer therapy associated cardiotoxicity and potentially reduce adverse impact on vascular aging