SINGLE-CELL TRANSCRIPTIONAL ANALYSIS AS A FRAMEWORK FOR DISSECTING RESILIENCE MECHANISMS

AGS/NIA R13 Conference Ravi Raju, MD PhD March 4, 2024

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Understanding cognitive resilience requires us to dissect the complex, heterogenous landscape of the brain

Regional (Anatomic) Contributions

Cellular Contributions

Neuronal heterogeneity recognized > 100 years ago

Human Protein Atlas Lanooij SD et al. *Mol Psych* 2023 Santiago Ramón y Cajal

The single-cell revolution

Process Tissue

Prefrontal cortex

Biopsy (OCT Fresh Frozen, – Cryosectioned)

Homogenize for Single Nuclei

Numerous studies have leveraged single cell technology to study neurodegeneration

Table 1 | Single-cell transcriptomic and epigenetic datasets from postmortem Alzheimer's disease tissue

Study	Data ID	Participant cohort	Brain region	Sequencing strategy	Total nuclei	
^a Mathys et al. ⁸	syn18485175	48	PFC (BA10)	snRNA-seq	80,660	
Davila-Velderrain	NA	112	Hippocampus	snRNA-seq	489,558	
et al. ¹³			Entorhinal cortex	_		
^a Grubman et al. ⁷	GSE138852	12	Entorhinal cortex	snRNA-seq	13,214	
^a Leng et al. ¹⁸	GSE147528	10	Caudal entorhinal cortex	snRNA-seq	42,528	
			Superior frontal gyrus	snRNA-seq	63,608	
Zhou et al.9	syn21125841	32	Dorsolateral prefrontal cortex	snRNA-seq	66,311	
Lau et al. ¹⁴	GSE157827	21	PFC (BA6, BA8, and BA9)	snRNA-seq	169,496	
Otero-Garcia et al. ¹²	GSE129308	8	PFC (BA9)	AT8 and MAP2 FACS	63,110	
Alsema et al. ¹²⁷	GSE146639	27	Superior parietal lobe Superior frontal gyrus	CD11/CD45 FACS; bc-Smart-seq2		
Marinaro et al. ¹²⁸	NA	12	PFC (BA9)	FACS neurons and glia; snRNA-seq	89,325	
^a Yang et al. ¹¹⁶	GSE163577	17	Hippocampus	Vascular enriched fraction	143,793	
		8	Superior frontal cortex	then snRNA-seq		
Gerrits et al. ¹²⁹	GSE148822	18	Occipitotemporal cortex and fusiform gyrus	NEUN ⁻ /OLIG2 ⁻ FACS, then snRNA-seq	482,472 nuclei	
Del-Aguila et al. ¹³⁰	http://ngi.pub/snuclRNA-seq/	3	Parietal lobe	snRNA-seq	26,331	
Olah et al. ¹³¹		14	Dorsolateral prefrontal cortex	CD11b⁺/CD45⁺, snRNA-seq	16,242	
		3	TNC	_		
^a Morabito et al. ⁷⁷	syn3219045	20	PFC	snATAC-seq and snRNA-seq	191,890	
Xu et al. ¹³²	GSE181279	5	PBMCs	CD45 selection, then TCR-seq	36,849	
Gate et al. ¹³³	GSE134578	18	Peripheral CD8 ⁺ TEMRA; CSF cells	TCR-seq	21,267	
Smith et al. ¹³⁴	GSE160936	12	Entorhinal and somatosensory cortex	NEUN-/SOX10-	52,706 astrocytes and 27,592 microglia	

NA, not applicable; PBMCs, peripheral blood mononuclear cells; PFC, prefrontal cortex; TCR-seq, T cell receptor sequencing. "Signifies a particularly noteworthy study.

Murdock et al. Nat Neurosci 2023

Fewer studies have looked at phenotypic variation within a disease state

RUSH

Spectrum of Neuropathology and Cognition in ROSMAP

corresponding tau burden score in grey above

Bennett DA et al. J Alzheimer's Disease 2018 Barker SJ*, Raju RM* et al. Science Transl Med 2021

Finding cognitively resilient patients in the ROSMAP cohort

						<u>.</u>					
-	-	_		Global cog	Age of	Global		CERAD	Braak	Neurofibrillary	PMI
Patient ID	Sex	Race	Cog Dx	at last visit	death (yrs)	pathology	Amyloid	score	score	tangles	(hrs)
Resilient											
	F	w	1.00	-0.10	87.62	0.98	2.78	1.00	5.00	1.05	6.28
	F	w	1.00	-0.41	97.55	1.66	11.68	1.00	4.00	1.38	
	F	w	1.00	-0.40	90.29	1.11	4.35	1.00	4.00	0.63	5.53
	F	w	1.00	0.40	88.80	0.16	0.29	4.00	3.00	0.40	19.50
	F	w	1.00	0.03	93.25	0.14	0.39	4.00	4.00	0.43	5.00
	F	w	1.00	0.52	85.89	0.87	11.05	1.00	4.00	0.30	11.50
	F	w	1.00	0.83	87.94	0.14	0.00	4.00	3.00	0.22	20.00
	F	w	1.00	-0.24	83.69	0.27	0.00	4.00	4.00	0.76	3.93
	F	w	1.00	-0.19	95.61	0.52	6.22	2.00	4.00	0.54	7.28
Non-resilient											
	F	w	4.00	-1.19	95.29	1.91	14.47	1.00	5.00	1.68	6.17
	F	w	4.00	-1.29	82.70	2.43	7.33	1.00	5.00	2.82	6.75
	F	w	4.00	-1.52	88.65	0.32	0.12	4.00	4.00	0.96	24.00
	F	w	4.00	-0.88	96.80	0.75	4.66	1.00	4.00	0.64	13.17
	F	w	4.00	-0.71	82.28	0.77	10.62	1.00	5.00	0.82	11.42
	F	w	4.00	-1.81	85.24	1.07	17.53	2.00	4.00	0.58	17.42
	F	w	4.00	-0.21	99.35	0.98	2.47	2.00	4.00	0.35	7.93
	F	w	4.00	-3.86	93.57	0.13	0.19	4.00	3.00	0.29	2.33
	F	w	4.00	-3.62	85.67	0.13	0.00	4.00	4.00	0.39	19.25
P-value	1.00	1.00	0.00	0.001	0.77	0.37	0.32	0.91	0.17	0.29	0.45

Identifying the neuronal genes associated with resilience at single cell resolution

Leng K et al. *Nat Neurosci* 2023 Udeochu JC et al. *Nat Neurosci* 2023

Larger scale dissection of genes and cell types associated with resilience

Cell

Article Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer's disease pathology

Hansruedi Mathys,^{1,2,3,7,8,*} Zhuyu Peng,^{1,2,8} Carles A. Boix,^{4,5,8} Matheus B. Victor,^{1,2} Noelle Leary,^{1,2} Sudhagar Babu,³ Ghada Abdelhady,³ Xueqiao Jiang,^{1,2} Ayesha P. Ng,^{1,2} Kimia Ghafari,³ Alexander K. Kunisky,³ Julio Mantero,^{4,5} Kyriaki Galani,^{4,5} Vanshika N. Lohia,³ Gabrielle E. Fortier,³ Yasmine Lotfi,³ Jason Ivey,³ Hannah P. Brown,³ Pratham R. Patel,³ Nehal Chakraborty,³ Jacob I. Beaudway,³ Elizabeth J. Imhoff,³ Cameron F. Keeler,³ Maren M. McChesney,³ Haishal H. Patel,³ Sahil P. Patel,³ Megan T. Thai,³ David A. Bennett,⁶ Manolis Kellis,^{4,5,7,*} and Li-Huei Tsai^{1,2,5,7,9,*}

Inhibitory neuron survival is associated with preservation of cognition in the presence of pathology

RNA in situ hybridization with RNAscope probe for the inhibitory neuron marker gene GAD2 (red)

What are the molecular regulators of interneuron survival in resilient patients?

No studies to date have assessed other domains of resilience in aging or aging-related disorders

INVITED COMMENTARY

WILEY

Molecular underpinnings of physical activity and resilience: A brief overview of the state-of-science and research design needs

Jennifer N. Baumgartner $^1~|~$ Bramaramba Kowtha $^1~|~$ Gabriela Riscuta $^2~|~$ Anil Wali $^3~|~$ Yunling Gao $^4~$

RUSH

Readouts of physical resilience \rightarrow

The role of epigenetics in psychological resilience

Demelza Smeeth, Stephan Beck, Elie G Karam, Michael Pluess

Motor function	Motor function composite - Average of 10 tests				
Motor dexterity	Motor function partial composite: Dexterity				
Motor gait	Motor function partial composite: Gait				
Motor hand strength	Motor function partial composite: Hand strength				
Average total daily ac	tivity	Actical activity measure - Average total daily activity (MAP only)			
Average daily activity	per active hour	Actical activity measure - Average activity per hour of activity (MAP only)			
Average daily inactivit BMI	y Body mass in	Actical activity measure - Average percentage of day without activity (MAP only) dex			
Physical activity (5 item	s) Hours of physical activity in late life - Sum of 5 items				

Readouts of psychological resilience \rightarrow

Clinical depression	Diagnosis of major depressive disorder made by clinician based on clinical review
Depressive symptom	 Measure of depressive symptoms (Modified CES-D)
Neuroticism	Neuroticism from NEO Five-Factor Inventory - Sum of 12 items
Extraversion	Extraversion from NEO Five-Factor Inventory - Sum of 6 items
Openness	Openness from NEO Five-Factor Inventory - Sum of 12 items (ROS only)
Agreeableness	Agreeableness from NEO Five-Factor Inventory - Sum of 12 items (ROS only)
Conscientiousness	Conscientiousness from NEO Five-Factor Inventory - Sum of 12 items

Challenges and limitations to translating insights from single-cell studies

- Limited definition of resilience in post-mortem tissue
 - Cognitive testing prior to death, with variable timing of last testing to tissue harvesting
 - Pathological burden determined post-mortem
- Variable definitions of resilience across multiple studies
 - Some transcriptional studies define resilience and non-resilience as binary states
 - Others define it as a continuous spectrum
- RNA is unstable in post-mortem tissues (combination of degradation and ischemiainduced changes)
- High technical variability in methodologies, platforms and analytical pipelines employed all result in different biological conclusions being made in different studies
 - We need more meta-analysis-esque studies that integrate data
- Translating post-mortem discovery into diagnostic and therapeutic interventions

Acknowledgements

- Environmental and Social Epigenetics (EASE) group, past and present
 - Alexis Davison
 - Juan Santoyo
 - Ying Zhou
 - Erica McNamara
 - Karim Abdelaal
 - Scarlett Barker
 - Fatima Gunther-Rahman
 - Noah Milman
- Professor Li-Huei Tsai
- Professor Stuart Lipton (Scripps)
- Professor Manolis Kellis (MIT)
 - Carles Boix
- Professor David Bennett (Rush)

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

- Division of Newborn Medicine
 - Stella Kourembanas
 - Kristie Leeman
 - Admin Team (Sarah, Steph, Brianna, Aleshia, etc..)
- Boston Medical Center, Department of Pediatrics
 - Vincent Smith
 - Kate Michelson
- The mice and patients that enable our research
- The families and children that inspire our work

DEDICATED TO THE HEALTH OF ALL CHILDREN

FOUNDATION

THE

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Healthy pregnancies. Healthy children. Healthy and optimal lives.

Child Health Research Career Development Award (CHRCDA) Program