Central Nervous System Physiology and the Development of Stress-related Disorders

James P. Herman, PhD Pharmacology and Systems Physiology University of Cincinnati

No conflicts of interest

Stress and Aging

Obama in 2008

Obama in 2012

1860 Abraham Lincoln 1865

Stress: A Whole Body Problem

- Integrated physiological (and behavioral) response designed to optimize survival and well-being in the face of adversity (internal or external)
- Widespread molecular signal conveying <u>contextual</u> <u>information</u>
- Amplify ongoing cellular processes (beneficial or deleterious)

University of CINCINNATI

Stress Dynamics and the Inverted U: Balancing Cost, Context, and Coping

Physiological Response (e.g., cortisol)

Communicating Physiological Context: Stress Responses (Hypothalamo-Pituitary-Adrenocortical Axis)

Glucocorticoid Signaling Mechanisms: Genomic and non-Genomic, MR and GR

Frontiers in Neuroendocrinology 49 (2018) 124-145

Review article

Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation

E.R. de Kloet^{a,*}, O.C. Meijer^a, A.F. de Nicola^b, R.H. de Rijk^c, M. Joëls^{d,e}

Circadian Variation in Corticosteroid Levels: Feeding a Hungry Organism

DeBono et al, JCEM (2009)

Diurnal Heart Rate and Blood Pressure Rhythms

Boggia et al, Am J Hypertension (2015)

Importance of Time-course Analysis in Human

Glucocorticoids and Metabolic Rate

Jimeno and Verhulst, eLife (2023)

Brain Stress Processing: Top-down and Bottom-up Signaling

Nature Reviews | Neuroscience Ulrich-Lai and Herman, 2009

Stress responses are controlled by multisynaptic pathways in the CNS

Ulrich-Lai and Herman, Nat Rev Neurosci (2009)

Neural mechanisms of 'Stress Control': Limbic Convergence in the BST

Limbic Interactions with Effector Pathways

Limbic Imbalance Associated with Pathology: PTSD

Males and females have a different glucocorticoid biology

- > The sexes differ in terms of biological priorities
- > There are sex differences in peripheral metabolism
- > Arguably, stress is a bigger problem for females
 - » affects ability to reproduce and nurture
 - Jower body mass and fat mass
- > Definition of resilience will likely differ for females and males

Sex and Stress (Glucocorticoid?)-Linked Diseases

Women are disproportionally likely to be diagnosed with:

- > Major depression
- > PTSD
- > generalized anxiety disorder
- > chronic fatigue

Disease symptoms differ amongst the sexes

- Depressed men tend to report more physical symptoms than women
- Women with PTSD tend not to exhibit changes in cortisol or acoustic startle, men manifest more physical symptoms

Sex Differences: Pronounced and Biologically Important

How are Stress Hormones Interpreted in the Male and Female Brain? Forebrain

Forebrain GR Deletion (Glutamate neurons)

Endpoint	Male	Female
Basal AM Cort	\uparrow	no
Stress Response	\uparrow	nope
FST immobility	\uparrow	not even close
Stress Sensitization	nothing	\uparrow

Forebrain GR Deletion (GABA neurons)

Endpoint	Male	Female
Basal AM Cort	no	no
Stress Response	no	↑
FST immobility	no	no
Center Time Open Field	no	no
Passive Avoidance	no	\downarrow

How are Stress Hormones Interpreted in the Male and Female Brain? Hypothalamus

Sim-1 GR Deletion (PVN/SON neurons)

Endpoint	Male	Female
Basal AM Cort	no	Ť
Stressor Response (CORT)	1	zip
Stressor Response (ACTH)	1	\downarrow

Solomon et al, Endo (2015) Nahar er al, Endo (2015)

Adolescent Sculpting of Prefrontal Cortex Connectivity

Immediate and Lasting physiological Responses to Adolescent CVS

CINCINNATI

Jankord et al, Endocrinology (2011), Wulsin et al, PNE (2016)

Environmental Enrichment Confers Resilience to Lasting Effects of CVS in Females but not Males

Smith et al, Stress (2018)

- > Exaggerated chronic stress response
- Resistant to stress triggers in adulthood
 Reduced sensitivity to second 'hit' of stress in adulthood

- > Adult-like chronic stress response
- Sensitivity to stress triggers in adulthood
 Sensitivity to second 'hit' of stress in adulthood

Males and females use a distinct neurocircuitry to control emotional responses following stress

Stress responses contribute to adaptation as well as pathology

Radley and Herman, Biol Psych (2023)

Aberrent stress responses contribute to pathology as well as resilience

D. Enhanced Adaptive Capacity

Stress and Age-related Disease: Pathology

- Alzheimer's Disease: chronic stress/glucocorticoids contribute to disease pathology, GR receptor antagonists improve memory and moodrelated symptoms
- Parkinson's Disease: stress can accelerate loss of dopamine neurons, strong depression comorbidity
- Cardiovascular Disease: MI, hypertension, vascular pathology
- Neurodegeneration: stress, glucocorticoids accelerate phosphorylated Tau expression, decrease neurogenesis

Stress and Affective Disease: Stress Hormone Pathology

 \geq

- PTSD: enhanced glucocorticoid receptor signaling linked to pathology
- Depression: pathology linked to impaired negative feedback regulation of the HPA axis
- Addictive Disorders: stress, glucocorticoids are implicated in relapse
- Chronic fatigue, fibromyalgia: connection to reduced cortisol secretion

Age-related Disease: Mechanisms of Stress Pathology

Guo et al, Signal Trans Targeted Ther, (2022)

- Mitochondrial dysfunction (oxidative stress)
- Calcium dyshomeostasis
- Inflammation (enhanced cytokine production)
- > Telomere shortening
- > Enhanced cellular senescence

Stress and Aging: Resilience

> Lifespan:

- Maintenance of glucocorticoid homeostasis
- Dietary restriction: Antiinflammatory (associated with elevated glucocorticoids?)

- > Well-being(?):
 - Activation of reward pathways
 - > Environmental enrichment

Rethinking Stress Biology: Balancing Adaptation and Pathology

Physiological and Behavioral Response

Context and Pathology

Physiological and Behavioral Response

'Bending' the Inverted U?

Physiological or CNS Response

Acknowledgments

Herman Lab: Ben Packard Parinaz Mahbod Reenie Fitzgerald Brad Chambers Christine Moore Taylorae Dunn Anthony Glorius Emily Devine Ria Parikh

Carlos Crestani Leandro d'Oliviera Former Lab Members: Evelin Cotella Nawshaba Nawreen Brittany Smith Rachel Morano Marissa Smail Matia Solomon Amy Furay Jessie Scheimann Rachel Moloney

Collaborators:

Rob McCullumsmith, Toledo Mark Baccei, UC Yueh-Chiang Hu, CCHMC Steve Danzer, CCHMC

Supported by BX005923, MH127835, MH119844, NS007453

National Institute of Neurological Disorders and Stroke

